Panasonic ideas for life

ML (AZ7) Limit Switch

Limit Switches

COMPACT SIZE LIMIT SWITCHES

Terminal mold types (epoxy-sealed terminal type) also available.

Standard type (Short roller lever)

FEATURES

1. Long life

High efficiency coil spring switching mechanism for long life: More than 10^{7} mechanical operations.
2. Great mechanical strength while being compact and lightweight The attachment pitch is 25.4 mm (1.000inch), same as for the Z basic model microswitch. Also, the outer cover cap uses a strong plastic with excellent mechanical characteristics. An M4 bolt can be used for the attachment.
3. The overtravel (O.T.) is large with great shock absorption
4. The switch itself is constructed to be dust-proof and oil resistant
The switch itself is closed flush with the diaphragm and the compressed rubber ring, so that the terminal mold type (epoxy-sealed terminal type) is perfectly flush with the terminal parts.

TYPICAL APPLICATIONS

Used in sequence control of food processing machines, automatic packaging machines, conveyers, and processors. Ideal for light industry machinery when installation pace is limited and a protective construction is sought.

PRODUCT TYPE

1. Standard type

Actuator	Part No.
Short push plunger	AZ7100
Push plunger	AZ7110
Hinge lever	AZ7120
Roller lever	AZ7121
One-way roller lever	AZ7124
Hinge short lever	AZ7140
Short roller lever	AZ7141
One-way short roller lever	AZ7144
Panel mount push plunger	AZ7310
Panel mount roller plunger	AZ7311
Panel mount cross roller plunger	AZ7312
Flexible rod	AZ7166

Notes) 1. When ordering an overseas-specified product, refer to the foreign standards overview.
2. Cadmium free contact types are available on a custom-made basis. Please add an "F" to the end of the part number when ordering.
2. Terminal mold type (epoxy-sealed terminal type)

Actuator		Cord outlet direction		
		N.C.		
	Part No.			
Short push plunger	AZ7400			
Push plunger	AZ7405	AZ7401		
Hinge lever	AZ7410	AZ7406		
Roller lever	AZ7415	AZ7411		
One-way roller lever	AZ7420	AZ7421		
Hinge short lever	AZ7425	AZ7426		
Short roller lever	AZ7430	AZ7431		
One-way short roller lever	AZ7435	AZ7436		
Panel mount push plunger	AZ7440	AZ7441		
Panel mount roller plunger	AZ7445	AZ7446		
Panel mount cross roller plunger	AZ7450	AZ7451		
Flexible rod	AZ7460	AZ7461		

FOREIGN STANDARDS

Standards	Applicable product		Part No.
UL	File No. Ratings Product type	$\begin{aligned} & \hline \text { E122222 } \\ & \text { 10A 250V AC } \\ & \text { Standard type only } \\ & \hline \end{aligned}$	Order by standard part No.
C-UL	File No. Ratings Product type	$\begin{aligned} & \text { E122222 } \\ & \text { 10A 250V AC } \\ & \text { Standard type only } \\ & \hline \end{aligned}$	
TÜV	File No. Ratings Product type	J9551204 AC-15 2A/250V~ Standard type only	

SPECIFICATIONS

1. Rating

Rated control voltage Load	Resistive load ($\cos \phi \doteqdot 1$)	Inductive load ($\cos \phi \doteqdot 0.4$)	Motor or lamp load	
			N.C. contact	N.O. contact
125 V AC	10A	6A	3A	1.5A
250 V AC	10A	4A	1.5A	1A
115 V DC	0.4 A	0.05A	-	-

2.Characteristics

Contact arrangement		1 Form C
Initial contact resistance, max.		$15 \mathrm{~m} \Omega^{*}$ (By voltage drop 6 to 8V DC at rated current)
Contact material		AgCdO contact
Initial insulation resistance (At 500V DC)		Min. $100 \mathrm{M} \Omega$
Initial breakdown voltage		1,500 Vrms for 1 min Between non-consecutive terminals 2,000 Vrms for 1 min Between dead metal parts and each terminal 2,000 Vrms for 1 min Between ground and each terminal
Shock resistance	In the free position	Max. 98m/s ${ }^{2}$ \{10G\}
	In the full operating position	Max. 294m/s ${ }^{\text {2 }}$ \{30G\}
Vibration resistance		55 Hz , double amplitude of 1.5 mm
Expected life (Min. operation)	Mechanical	10^{7} (at 50 cpm)
	Electrical	2×10^{5} (at 20 cpm)
Ambient temperature/Ambient humidity		-20 to $+60^{\circ} \mathrm{C}-4$ to $+140^{\circ} \mathrm{F} / \mathrm{Max} .95 \%$ R.H. (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Max. operating speed		120 cpm

*The resistance of a copper wire is not included.
3.EN60947-5-1 performance

Item	Rating
Rated insulation voltage (Ui)	250 VAC
Rated impulse withstand voltage (Uimp)	2.5 kV
Switching over voltage	2.5 kV
Rated enclosed thermal current (Ithe)	10 A
Conditional short-circuit current	100 A
Short-circuit protection device	10 A fuse
Protective construction	IP64 (switch)
Pollution degree	3

4. Operating characteristics

Characteristics	O.F. (N\{gf\}) max.	R.F. (N\{gf\}) min.	Pretravel (P.T.), max. mm inch	Movement Differential (M.D.), max. mm inch	Overtravel (O.T.), min. mm inch	Operating Position (O.P.) mm inch
Short push plunger	$5.88\{600\}$	$0.98\{100\}$	2.0 .079	0.8 .031	0.8 .031	$30 \pm 0.81 .181 \pm .031$
Push plunger	$5.88\{600\}$	$0.98\{100\}$	2.0 .079	0.8 .031	5.0 .197	$44 \pm 1.21 .732 \pm .047$
Hinge lever	$1.47\{150\}$	$0.39\{40\}$	13.5 .531	3.2 .126	4.0 .157	$25 \pm 2.0 .984 \pm .079$
Roller lever	$1.77\{180\}$	$0.49\{50\}$	11.0 .433	2.4 .094	3.0 .118	$40 \pm 1.91 .575 \pm .75$
One-way roller lever	$1.96\{200\}$	$0.59\{60\}$	11.0 .433	2.4 .094	3.0 .118	$50 \pm 2.01 .969 \pm .079$
Hinge short lever	$2.16\{200\}$	$0.59\{60\}$	8.5 .335	2.0 .079	2.5 .098	$25 \pm 1.3 .984 \pm .051$
Short roller lever	$2.35\{240\}$	$0.78\{80\}$	6.5 .256	1.5 .059	2.0 .079	$40 \pm 1.61 .575 \pm .063$
One-way short roller lever	$2.75\{280\}$	$0.98\{100\}$	6.5 .256	1.5 .059	2.0 .079	$50 \pm 1.61 .969 \pm .063$
Panel mount push plunger	$5.88\{600\}$	$0.98\{100\}$	2.0 .079	0.8 .031	6.0 .236	$21.8 \pm 0.8 .858 \pm .031$
Panel mount roller plunger	$5.88\{600\}$	$0.98\{100\}$	2.0 .079	0.8 .031	6.0 .236	$33.3 \pm 1.21 .311 \pm .047$
Panel mount cross roller plunger	$5.88\{600\}$	$0.98\{100\}$	2.0 .079	0.8 .031	6.0 .236	$33.3 \pm 1.21 .311 \pm .047$
Flexible rod	$1.18\{120\}$	-	25.984	-	11.433	$361.417($ T.T.)

Note) For the operating characteristics, refer to the TECHNICAL INFORMATION.

5. Protective characteristics

Protective construction	Standard type	Terminal mold type (Epoxy-sealed terminal type)
$y n y y$	IEC	0

DATA

1. Life curve

WIRING DIAGRAM

Circuit

Standard type

DIMENSIONS

- Short push plunger

- Push plunger

- Roller lever

General tolerance: $\pm 0.4 \pm .016$

- Hinge lever

- One-way roller lever

- Hinge short lever

- Panel mount push plunger

- Panel mount cross roller planger

- Flexible rod

Terminal Mold Type (Epoxy-Sealed Terminal Type)

The waterproof type (IP64) has its terminals sealed with epoxy resin.

1. Type of product

All the standard type have this epoxy-sealed terminal types.

2. Appearance

The dimensions are the same as those of the standard type.
The cord outlet is located either at the N.C. or COM side.
The cord is 1 m 3.281 ft . long.

- Cord specifications

Type	Vinyl cabtire cable $(\mathrm{VCT})\left(3 \times 1.25 \mathrm{~mm}^{2}\right)$
Cord length	1 m 3.281 ft.
Lead colors	Black: COM Red: N.C. White: N.O.

CAUTIONS

1. Ambient conditions

1) When the switch is to be used in places where oil or is abundant, bore a drain hole in the bottom of the terminal cover.
2) Avoid places where highly acid or alkaline fluids are used or high temperatures prevail.
3) This model uses silver terminals. Therefore, if used at relatively low frequencies for long periods of time, or if used with very small loads, the oxidization that forms on the contact surfaces will not wear away and eventually cause improper contact. For such applications, use limit switches with gold/metal contacts (e.g. VL limit switches) or ones meant for small loads (e.g. HL limit switches).
4) This switch is not designed for underwater use. Do not use the unit underwater.
5) To improve reliability during actual use, it is recommended that the operation be checked under installation conditions.
6) If $O T$ is too big, the life of limit switch will be shortened switching friction. Use it with enough margin of OT. 70% of OT standard value will be good for use. 7) Do not use the switch in a silicon atmosphere. Case should be taken where organic silicon rubber, adhesive, sealing material, oil, grease or lead wire generates silicon.
7) Avoid use in excessively dusty environments where actuator operation would be hindered.
8) When used outdoors (in places where there is exposure to direct sunlight or rain such as in multistory car parks) or in environments where ozone is generated, the influence of these environments may cause deterioration of the rubber material. Please consult us if you intend to use a switch in environments such as these.
9) Do not store in places where organic gas might be generated or in places of high dust content or high humidity.

2. Mounting and wiring

1) Remove the terminal cover with a Θ driver. Insert the lead wire through the knock-out of the terminal cover.
(The terminal cover of the epoxy-sealed terminal type is filled with resin. It cannot be removed.)

2) Connect the lead wire to the terminal. When connecting the terminals with the fasten lug, those with the insulation sleeve are recommended.
Tightening torque: 1.18 to $1.47 \mathrm{~N} \cdot \mathrm{~m}\{12$ to $15 \mathrm{~kg} \cdot \mathrm{~cm}\}$
3) The terminal cover can be mounted in both directions.

- In this case, fasten the terminal cover in the opposite direction.

- Side mounting

To mount onto a side, use M4 screws with washers and secure it firmly. The tightening torque should be 1.18 to 1.47 $\mathrm{N} \cdot \mathrm{m}$ (12 to $15 \mathrm{~kg} \cdot \mathrm{~cm}$).

- Panel mounting
(panel mount plunger type)
When installing the panel mounting type onto a panel, the tightening torque for the hex. nut should be $7.84 \mathrm{~N} \cdot \mathrm{~m}$ (80 $\mathrm{kg} \cdot \mathrm{cm})$.
- For terminal mold types (epoxy-sealed terminal types), there are two types by the cord outlet direction; N.C. side and COM side.

3. Flexible rod

1) Put the detective object to the tip of plastic part.
2) Avoid pushing the tip of actuating spring in the direction of axis. In the places of oil or water splashes and much dust area, use the limit switch with keeping the actuating spring in the vertical direction.

SELECTOR CHART

Classification				Subminiature size		Compact size					
Product name				SL (AZ3) Micro Limit Switches		HL (AZH) Limit Switches (Die cast case)		AZH) witches st case)	HL (AZH) Limit Switches (Plastic case)	ML (AZ7) Limit Switches (standard)	ML (AZ7) Limit Switches (Epoxy-Sealed terminal type)
AppearanceHead code								AZH23		$\mathrm{A} Z 7$	
Feature				- A limit switch with high-density mounting that improves stroke capacity through an O.T. absorption-type spring. - LED lamp type also available.		- High sealability that satisfies IEC IP67. - Wiring is screw-terminal type. - Bifurcated type also available.	- High seal satisfies - Less wiring installatio tor type. - LED lamp available.	ability that EC IP67. ng, less n connectype also	- Bifurcated type available. - Perfect for applications that prioritize economy.	- Switches installed with both economical and compact Z-basic microswitches and limit switch protective construction. - Coil spring system provides long life.	- An ML compact limit switch with an epoxy-sealed case that completely encloses the terminal.
	Dust-proof type		IP60	$\xrightarrow{\text { Rubber-cover type }}$	${ }^{\text {Socket with ord dype }}$	\bigcirc			\bigcirc	\bigcirc	\bigcirc
	Abrasion-proof type		IP64	-	\bigcirc	\bigcirc			\bigcirc	-	\bigcirc
	Surge-proof type		IP65	-	-	\bigcirc		\bigcirc	-	-	-
	Corrosion-proof type		IP67	-	-	\bigcirc			-	-	-
	Oil-resistant type		-	-	\bigcirc	\bigcirc		O	\bigcirc	-	\bigcirc
	Neon			-	-	-		-	-	-	-
	美 LED			-	\bigcirc	-	\bigcirc (with LE	ED lamps)	-	-	-
Ratings (load resistance)				$\begin{gathered} \text { 4A250V AC } \\ \text { 4A125V AC } \\ \text { 4A30V DC } \\ 0.1 \mathrm{~A} 125 \mathrm{~V} \text { DC } \end{gathered}$			[Bifurcat without LEDlamps 0.1 A125V AC 0.1 ABVDC 0.1 A 14 V DC 0.1 A 30 V DC			10A250V AC 10A125V AC 0.4A115V DC	10A250V AC 10A125V AC 0.4A115V DC
Life (Min.ope.)		Mechanical		10^{7}		10^{7}	10^{7}		10^{7}	10^{7}	10^{7}
		Electr	rical	10^{5}		5×10^{5}	5×10^{5}		5×10^{5}	2×10^{5}	2×10^{5}
Operating force (max.) (hinge lever type)				0. 98 N \{100gf\} 1. 96 N \{200gf\} (short lever type) 2. $94 \mathrm{~N}\{300 \mathrm{gf}\}$		$\begin{gathered} 2.45 \mathrm{~N}\{250 \mathrm{gf}\} \\ 3.92 \mathrm{~N}\{400 \mathrm{gf}\} \\ 11 . \mathrm{NN}\{1,200 \mathrm{gf}\} \\ \text { (Plunger type) } \end{gathered}$	$\begin{gathered} 2.45 \mathrm{~N}\{20 \mathrm{gf}\} \\ 3.92 \mathrm{~N}\{400 \mathrm{gf}\} \\ 11.8 \mathrm{~N}\{1,20 \mathrm{Og}\} \\ \text { (Plunger type) } \end{gathered}$		$\begin{aligned} & \text { 2.45N }\{250 \mathrm{gf}\} \\ & 3.92 \mathrm{~N}\{400 \mathrm{gf}\} \end{aligned}$	$\begin{aligned} & 1.47 \mathrm{~N}\{150 \mathrm{gff}\}, 1.77 \mathrm{~N}\{180 \mathrm{gf}\}, \text {, } \\ & 1.96 \mathrm{~N}\{200 \mathrm{f}\}, 2.16 \mathrm{~N}\{220 \mathrm{gf}\}, \\ & 2.35 \mathrm{\{ } 240 \mathrm{~g}\}, 2.75 \mathrm{~N}\{280 \mathrm{gf}\}, \\ & 5.8 \mathrm{~N}\{60 \mathrm{~g}\} \text { max. } \end{aligned}$	
Available actuators											
Terminals				- Rubber cover (Solder and quick connect (\#110) terminal) - Socket with cord		Screw terminal	Connector terminal		Screw terminal	Screw terminal	Vinyl cabtire cable (1m 3.281 ft)
Wiring				Cabtire	e code	Cabtire code	Cabtire	e code	Cabtire code	Cabtire cable	Cabtire cable
Mounting pitch (Applicable screw)				Cross-ang $28 \times$ $1.102 \times$ (M4 s	gled wiring 14 mm .551 inch crew)	33mm 1.299inch (M4 screw)	$\begin{array}{r} 33 \mathrm{~mm} 1.2 \\ (\mathrm{M} 4 \mathrm{sc} \end{array}$.299inch screw)	33mm 1.299inch (M4 screw)	25.4 mm 1.000inch (M4 screw)	25.4 mm 1.000 inch (M4 screw)
Available standards				UL,	CSA	UL, CSA, TÜV, CE	UL, CSA,	, TÜV, CE	UL, CSA, TÜV, CE	UL, C-UL, TÜV, CE	-
Page				P.	13	P. 18		18	P. 18	P. 33	P. 33

Note: Excludes limit switch replacement parts
Actuators

Push plunger	Roller plunger	Cross-roller plunger	Roller arm	Adjustable roller arm	Adjustable rod	Fork

Spring wire	Flexible rod	Hinge lever	Roller lever	One-way roller lever	Roller lever

Classification				Subminiature size vertical type		Compact size vertical type			Vertical type		Touch type	Door switch	
Product name				QL (AZ4) Micro Limit Switches		DL (AZD1) Mini Limit Switches	VL (AZ Limit S	8) Mini witches	Limit	Z witches	VL-T Mini Touch Limit Switches	Compact Magnelimit	Magnelimit
AppearanceHead code				AZ4		AZD1		AZ8		AZ5	AZ84		AZC1
Feature				- A subminiature, highly accurate limit switch with built-in environment-proof functions. - Cord extraction can be changed in four directions, due to the dedicated L socket. - LED lamp can also be attached.		- Excellent safety even if the contact point is welded, due to the forced contact opening mechanism. - Block mount system makes parts replacement easy. - Conforms to DIN standards.	- In addition to the characteristics of stand mounted limit switches, is compact, easily installable, highly reliable, lightweight, and economical.		- Built-in dedicated circuit breaker (1 Form A 1 Form B). - Different types of actuator available.		- Operate just by touching lightly. - Comes with sensitivity adjustment function and indicates operations. - VL type touch limit switch	- Secured by magnet - Built-in switch detection Dual-role switch in one unit. - Safe design prevents operator making errors.	- Secured by magnet - Built-in switch detection Dual-role switch in one unit. - Construction possible with 100 V AC power.
	Dust-proof type		IP60	$\bigcirc_{0}^{\text {L socket type }}$	${ }^{\text {Socket with cord thpe }}$	\bigcirc	\bigcirc		\bigcirc		\bigcirc	-	-
	Abrasion-proof type		IP64	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc		\bigcirc	-	-
	Surge-proof type		IP65	\bigcirc	-	\bigcirc	-		-		-	-	-
	Corrosion-proof type		IP67	-	-	\bigcirc	-		\bigcirc		-	${ }^{1)} \bigcirc$	-
	Oil-resistant type		-	\bigcirc	\bigcirc	-	\bigcirc		\bigcirc		\bigcirc	-	-
	Neon			-	-	-	-	\bigcirc	-	\bigcirc	-	-	-
	LED			-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	-
Ratings (load resistance)				5A250V AC		$\begin{aligned} & \text { 6A250V AC } \\ & 6 A 380 V \text { AC } \\ & 5 A 24 V \text { DC } \end{aligned}$	$\begin{aligned} & \text { [Standard type] } \\ & \text { 5A250V AC } \\ & \text { 5A125V AC } \\ & \text { 0.4A125V DC } \end{aligned}$	[With lamp type] [Neon lamp type] 5A 240V AC 5A 125 V AC [LED lamp type] 3A 24V DC	[Standard type] 10A125V AC 6A250V AC 2A500V AC 0.8A125V DC	[With lamp type] [Neon lamp type] 10A 125V AC 6A 240V AC [LED lamp type] 6A 24V DC	Input voltage 12-24V DC Output current 150 mA	2) $\begin{aligned} & 5 \mathrm{~A}(2 \mathrm{~A}) 125 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A}(2 \mathrm{~A}) 250 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A}(2 \mathrm{~A}) 30 \mathrm{VDC} \end{aligned}$	5A 125V AC 5A 250V AC 5A 30VDC
Life (Min.ope.)		Mechanical		10^{7}		10^{7}	10^{7}		10^{7}		10^{7}	10^{5}	10^{5}
		Electr	rical	3×10^{5}		1.5×10^{5}	3×10^{5}		5×10^{5}		-	5×10^{4}	5×10^{4}
Operating force (max.) (hinge lever type)				6.86N \{700gf\} (Plunger type) $1.11 \mathrm{~N}\{113 g f \mathrm{f}, 4.41 \mathrm{~N}$ \{450gf\} (Arm type)		6.37N $\{650 \mathrm{gf}\}$ $4.90 \mathrm{~N}\{500 \mathrm{gf}\}$ 3.29 N \{400gf\}	$\begin{gathered} 0.88 \mathrm{~N}\{90 \mathrm{gf}\}, \\ 5.88 \mathrm{~N}\{600 \mathrm{gf}\}, \\ 8.83 \mathrm{~N}\{900 \mathrm{gf}\}, \\ 19.16 \mathrm{~N}\{2,000 \mathrm{gf}\} \end{gathered}$		$\begin{gathered} 1.39 \mathrm{~N}\{142 \mathrm{gf}\} \\ 26.67 \mathrm{~N}\{2,720 \mathrm{gf}\} \end{gathered}$		-	-	3.43 N \{350gf\}
Available actuators						$\frac{\mathbb{R}}{\substack{\operatorname{R}}}$						几	几
Terminals				- L socket (Solderand quick connect (\#110) terminal) - Socket with code		Screw terminal (Conduit connectors: PF: 1/2, PG: 13.5 types)	Screw terminal		Screw terminal		Screw terminal	Tab \#110 terminal Lead wire	Screw terminal
Wiring				Cabtire code		Cabtire code	Cabtir Cap tire	cord cable	Cabtire (wiring	cable type)	Cabtire cord Cabtire cable	Cabtire cord	Cabtire cord
Mounting pitch (Applicable screw)				$\begin{gathered} 14 \times 28 \mathrm{~mm} \\ .551 \times 1.102 \mathrm{inch} \\ (\mathrm{M} 4 \text { screws }) \end{gathered}$		$\begin{gathered} 22 \times(47 \mathrm{~mm}) \\ .866 \times 1.850 \mathrm{inch} \\ (\mathrm{M} 4 \text { screws }) \end{gathered}$	$\begin{array}{r} 21 \times 5 \\ .827 \times 2 \\ (\mathrm{M} 4 \mathrm{sC} \end{array}$	56 mm 205inch rews)	$\begin{array}{r} 30.2 \times \\ 1.189 \times \\ \text { (M5 s } \end{array}$	58.7 mm 2.311 inch rews)	$\begin{gathered} 21 \times 56 \mathrm{~mm} \\ 827 \times 2.205 \mathrm{inch} \\ (\mathrm{M} 4 \text { screws) } \end{gathered}$	30 mm 1.181 inch (M3)	52mm 2.047inch (M4)
Available standards				UL,	CSA	UL, C-UL, TÜV, CE	UL, C-UL,	TÜV, CE	U	L	-	UL, C-UL	UL, C-UL, CE
Page					. 38	P. 44	P. 5	52	P. 6		P. 68	P. 72	P. 74

Notes: 1) Excludes exposed part of terminals, externally mounted components, and magnet catches.
2) Figures in parentheses () indicate rated current of water-resistant type.

Other listed products

Product name	PS Hall Sensors
Appearance	
Feature	- Magnetic detector type subminiature sensor - Perfect for slide table limiting - Economical price with operating display lamp attached.
Page	P. 76

ACTUATOR SELECTION

Standard glossary

- Fixed rating values

The values that guarantee the standards for the limit switch characteristics and functions. For example, the rated current and rated voltage, which are preset conditions (load type, current, voltage, frequency, etc.)

- Operating object

The mechanism and mountings that operate the limit switch actuator. Used for mechanical operators such as cams and dogs.

- Detective object

The unit other than mechanical mountings that operate the limit switch. Products, parts, jigs, etc.

- Reaction spring (movable spring) The mechanical part that switches the limit switch contact is called either the reaction spring or the moveable spring.

- Contact

When the counter-spring revolves, power is switched on and off through the contact between metal parts

- Contact gap

The effective clearance between the fixed contact and the moveable contact. Also called breaking distance.

- Contact arrangement

The construction of the electrical input/output circuit depending on use. For example, the following two applications:

- Contact type

Used in opposition to a semiconductor switch that has switching characteristics. Fulfills switch functions through a mechanical ON/OFF contact.

- Terminal mold

After wiring, the connecting part is molding by epoxy resin for waterproof, oil-resistant and dust-proof capabilities.

CONSTRUCTION

- Actuator

This part directly detects movement of the dog, cam, and so forth in the operating unit, and transmits external force to the changeover mechanism, thereby engaging the moveable contact and operating the switch.

- Headblock

An independent part of the actuator mechanism of the Limit Switch.

- Wiring vent (cord vent)

The seal on the wiring at the mouth of the wiring vent. Also called the conduit vent for the screw hole used in the wiring.

- Terminals

The part of the wiring work in the wiring that forms the circuit for electrical input and output.

OPERATING CHARACTERISTICS

- Operating Force (O.F.) The force required to cause contact snap-action. It is expressed in terms of force applied to the actuator.
- Release Force (R.F.)

The force to be applied to the actuator, at the moment contact snaps back from the operated position to unoperated position.

- Pretravel (P.T.)

Distance of the actuator movement from free position to operating position.

- Overtravel (O.T.)

The distance which the actuator is permitted to travel after actuation without any damage to the switching mechanism.

- Total Travel (T.T.)

The distance which the actuator is permitted to travel from free position without any damage to the switching mechanism.

- Movement Differential (M.D.) The distance from operating to release position of the actuator.
- Operating Position (O.P.) The position of the actuator when the traveling contact snaps to the fixed contact.
- Release Position (R.P.)

The position of the actuator when the traveling contact snaps back from the operating position to its original position.

- Free Position (F.P.)

Position of the actuator when no force is applied to it.

TECHNICAL INFORMATION

Glossary relating to the EN60947-5-1

- EN60947-5-1

EN standard same as IEC947-5-1

- Utilization categories

The following examples express the classification of switches by category of use.

Current type	Category	Contents
AC	AC-15	Controls electromagnetic loads in excess of 72VA (Volt Amperes.)
DC	DC-12	Controls resistance loads and semiconductor loads.

- Rated operational voltage (Ue) The maximum rated voltage for switch operation. This must never exceed the maximum ratings insulation voltage (Ui).
- Rated operational current (le) The maximum rated current for switch operation.
- Rated insulation voltage (Ui)

The maximum rated current value which guards the switch's insulation functions, forming the parameters for the resistance values and the mounting distance.

- Rated impulse withstand voltage (Uimp)
The peak impulse current value which enables the switch to resist without insulation breakdown.
- Rated enclosed thermal current (Ithe)
The current value that enables current to flow without exceeding the specified maximum temperature in the recharging contact switch. If the pins are made of brass, the maximum temperature limit is $65^{\circ} \mathrm{C} 149^{\circ} \mathrm{F}$.

- Conditional short circuit current

 The current the switch can resist until the short circuit protection device is activated.- Short circuit protection device A device that protects the switch from short circuits through a circuit break (breakers, fuses, etc.)
- Switching overvoltage

The surge momentarily generated when a circuit is closed. Must be lower than the Uimp value.

- Pollution degree

Expresses in levels the environment in which the switch is used. The four levels are shown below.
Limit switches come under contamination level 3.

Pollution degree	Contents
1	No contamination or, even if conta- mination is present, only non-con- ducting contamination is generated.
2	Normally, only non-conducting cont- amination is generated, but there remains the possibility of temporary conducting contamination when the circuit is formed.
3	Conducting contamination is gener- ated, or else dry non-conducting contamination is generated by cir- cuits which can be anticipated.
4	Permanent conducting contamina- tion is generated by dust, rain, snow, and other conductors.

PROTECTIVE CONSTRUCTION

Protective construction

Expresses the degree of protective construction that guards the level of functionability of the switch against ingress of solid objects, water, and oil. The standards are IEC529 (IEC: International Electrotechnical Commission) standards. IEC standards determine the level of protection against both water and solid objects, but not against oil.

Protection against both water and solid objects

\square	Level	Protection level	Protection level and test methods	
	0	-	No particular protection	
	3	Rain-proof	Protection against rain fall	No damage incurred when sprayed with water continuously for 10 minutes at angles of up to 60° from the perpendicular.
Protection against water	4	Foam-proof	Protection against flying foam	No damage incurred when sprayed with water continuously for 10 minutes at angles of up to 180° from the perpendicular across a wide area.
	5	Spray-proof	Protection against spray	No damage incurred when sprayed with a jet of water for 3 minutes from all directions, as per the diagram on the left.
	6	Water proof	Protection against waves Nozzle radius 12.5 mm . 492 inch Water pressure 100kP	Water does not invade the interior when sprayed with a jet of water for 3 minutes from all directions, as per the diagram on the left.
	7	Corrosionproof	Protection against corrosion while immersed in water	Water does not invade the interior during immersion for 30 minutes at a depth of 1 m 3.281 ft ..
Protection against solid objects	Level	Protection level	Protection level and test methods	
	4	-	Protection against solid objects exceeding 1 mm .039inch in size.	A hard wire 1 mm dia. .039 inch dia. across cannot penetrate the inside.
Protection against solid objects	5	-	Protection against dust	The unit is left for 8 hours in an atmosphere in which 2 kg of talcum powder per $1 \mathrm{~m}^{3}$ is floating. No damage incurred from talcum powder penetrating the inside.
	6	Dust-proof	Protection againt dust (dust does not penetrate)	The unit is left for 8 hours in an atmosphere in which 2 kg of talcum powder per $1 \mathrm{~m}^{3}$ is floating. The talcum powder does not penetrate the inside.

Note: 1. All of the tests cited above were conducted with the cord vent (conduit vent) tightly shut.
2. The above protective constructions are based on IEC standard but major differences may arise due to length of use and operating environment. This should be thoroughly discussed and verified.
3. When the corrosion-proof model is immersed in water for 30 minutes or more, verify that no water has penetrated the inside before use.

CAUTIONS FOR USE

DESIGN OF OPERATING DOG AND OPERATING SPEED

Pay attention to the following points when designing the dog for limit switch operation

1. Make the dog faceplate as smooth as possible.
2. Adjust both the dog angle and the set arm angle as below, depending on the operating speed.
3. The depth (h) of the dog effects the lifespan of the limit switch. Therefore, set the depth to a maximum of 80% of the Total Travel (T.T.)
4. The relationship between the speed of the $\operatorname{dog}(\mathrm{V}=\mathrm{m} / \mathrm{s})$ and the tip angle (α) is as follows:
1) $V \leqq 0.2 \mathrm{~m} / \mathrm{s}$

α	$\operatorname{Vmax}(\mathrm{m} / \mathrm{s})$
45°	0.2
60°	0.1
60 to 90°	0.05

When $\mathrm{V} \leqq 0.2 \mathrm{~m} / \mathrm{s}$, set the arm to perpendicular and set the arm rise angle to between 45° and 90°. If the dog rise angle is reduced, the maximum tolerable speed is increased.
As a rule, $\alpha=45^{\circ}$ is optimum.
2) $V \leqq 0.5 \mathrm{~m} / \mathrm{s}$

Because the arm jiggle is as a minimum at a comparative speed such as $\mathrm{V} \leqq 0.5 \mathrm{~m} / \mathrm{s}$, setting both the dog angle so that it travels perpendicularly and the arm angle to 45° is optimum.
3) $0.5 \mathrm{~m} / \mathrm{s}<V \leqq 2 \mathrm{~m} / \mathrm{s}$

α	$\operatorname{Vmax}(\mathrm{m} / \mathrm{s})$
40°	0.7
35°	0.9
30°	1.3
25°	2.0

The maximum tolerable speed can be extended by further reducing the dog rise angle from 45° when $0.5 \mathrm{~m} / \mathrm{s}<$ $\mathrm{V} \leqq 2 \mathrm{~m} / \mathrm{s}$. It is necessary to set the arm so that the dog's cutting surfaces are always parallel $\left(\theta \circ=90^{\circ}-\alpha\right)$
4) Overriding the $\mathrm{dog}(\mathrm{V} \leqq 0.2 \mathrm{~m} / \mathrm{s})$

α	$\operatorname{Vmax}(\mathrm{m} / \mathrm{s})$
45°	0.2
60°	0.1
60 to 90°	0.05

If overriding the dog, set the arm perpendicularly, so that $\alpha=45^{\circ}$. If the dog angle is reduced, the tolerable speed is increased.
5) Roller plunger type

α	$V \max (\mathrm{~m} / \mathrm{s})$	h
20°	0.5	(0.5 to 0.7) T.T.
30°	0.25	(0.6 to 0.8) T.T.

Even if overriding the dog, set the forwards and rearwards motion exactly the same, and avoid any settings that make the actuator accelerate rapidly from the dog.
5. Operation speed

1) When the operation (acting and reverting) speed is exceedingly slow, switching of the contacts will become unstable and this could cause problems such as failure to make contact and welding. As a guide, the speed should be at least $1 \mathrm{~mm} / \mathrm{s}$. 2) When the operation (acting and reverting) speed is exceedingly fast, be careful because the violent motion could cause breakage and with increased frequency, contact switching will not be able to keep up. As a guide, the switching frequency should be within 20 times per minute.

PROTECTION CIRCUIT

1. The ON/OFF circuit for the guidance load may suffer contact damage due to surges or inrushes when the power is turned either ON or OFF.
Consequently, insertion of a protective circuit as per the following diagram is recommended, in order to protect the contacts.

2. Do not connect either irregular poles or power sources to a switch contact. Power connection examples (irregular pole connection)

Example of unsuitable power connection (abnormal power connection)

3. Avoid circuits where power may find a way between the contact points (as this may cause welding.)

NO GOOD

4. Using electronic switch circuits (low power, low current)

1) Bouncing and chattering are generated due to collision between the contacts when the limit switch is switching between them, and this sometimes causes such problems as white noises and error pulses in both the electronic circuit and the reverberation equipment.
2) If the generation of bouncing and chattering becomes a problem, it is necessary to consider installing a CR circuit or other absorption circuit given the circuit design.
3) This is particularly necessary when high contact reliability is needed, and is unsuitable for silver contact switches. Switches with gold contacts possess excellent performance.
4) Do not attempt to physically alter any part of the switch itself, such as the actuator, or switch attachment vent, as this may cause alterations to both characteristics and performance, and damage the insulation.
5) Do not pour any lubricants such as oil or grease onto the moving parts of the actuator, as there is a possibility that this will cause a malfunction due to seepage into the inside, and impair the motion. Silicon-based grease in particular affects the contact points badly.
6) If the switches are not to be used for an extended period of time, their contact reliability may be reduced due to oxidation of the contact points. Because accidents may result from the impaired conductivity, always implement a check beforehand.
7) Prolonged continuous use of the switch hastens deterioration of the parts (especially the seal rubber) and may cause a malfunction in the release. For this reason, always implement a check beforehand.
8) Usage in the vicinity of either the switch operating position (O.P.) or the release position (R.P.) results in unstable contacts. If using the NC contact point, set the actuator to return to the free position (F.P.) Also, is using the NO contact point, hold the ratings values down to 70 to 100% for the overtravel (O.T.)
9) If the actuator is forced beyond its total travel (T.T.), the internal mechanism may be damaged. Always use within the T.T.
10) Do not apply unreasonable force to the actuator, as this may result in damage and impaired movement. 8) The switch, if dropped, may break due to excessive vibration and impact. Therefore, please use extra caution when transporting and installing. 9) Condensation inside the switch may occur if there are rapid ambient temperature changes when the switch is in a high temperature and humidity. Since this occurs easily during marine transport, be extra cautious of what the environment will be when shipping. Condensation is the phenomenon in which water vapor condenses into switch-adhering water droplets when the temperature rapidly drops in a high-temperature, high-humidity atmosphere or when the switch is quickly moved from a low temperature location to a place of high temperature and high humidity. It is the cause of insulation deterioration and of rust. 10) Be careful of freezing in temperatures below $0^{\circ} \mathrm{C}$. Freezing is the phenomenon in which moisture adhering to the switch from condensation or when in unusually high-humidity environments freezes onto the switch when the temperature drops below the freezing point. Please extra caution because freezing can lock moving parts, cause operational delays, or interfere with conductivity when there is ice between the contacts.
11) In low-temperature, low-humidity conditions, plastic becomes brittle and the rubber and grease harden, which may lead to malfunction.
12) Long term storage (including during transport) in high temperature or high humidity environments or where the atmosphere contains organic or sulfide gas, will cause sulfide or oxide membrane to form on the contact surfaces. This in turn will cause unstable or failed contacting that may lead to functional malfunction. Please verify the atmosphere when storing and transporting.
13) Packaging should be designed to reduce as much as possible the potential influence of humidity, organic gas, and sulfide gas, etc.
14) Please avoid sudden changes in temperature. This is a cause of switch deformation and encourages the seal structure to breathe, which may lead to seal failure and operational malfunction.
15) If installing a thermoplastic resin case, the use of a spring washer tightened directly against the case will cause the case to collapse and become damaged. Therefore, please add a flat washer before tightening. Also, be careful not to install if the case is being twisted.
16) For the purpose of improving quality, materials and internal structure may be changed without notice.
17) When used outdoors (in places where there is exposure to direct sunlight or rain such as in multistory car parks) or in ambient temperature environments where ozone is generated, the influence of these environments may cause deterioration of the rubber material. Please consult us if you intend to use a switch in such environments.

PRECAUTIONS RELATING TO THE INSTALLATION ENVIRONMENT

Avoid using in silicon environments such as organic silicon-based rubber, solvents, sealants, oil, grease, or wiring.

IMPROVEMENT EXAMPLES

	Espoman
$\begin{array}{rl} x & 0 \\ 8 \end{array}$	
	Hememem
$\times \underset{=}{0}$	

Explanation

Table of Recommended Substitute Products for Discontinued Producis

Products to be discontinued	Recommended substitute products	Page
AZ1 series Limit switches	ML (AZ7) Limit switches	P. 33
AZ2 series Limit switches	ML (AZ7) Limit switches	P. 33
Slitted type Limit switches (AZ6)	ML (AZ7) Limit switches	P. 33
New slitted type Limit switches (AZ66)	ML (AZ7) Limit switches	P. 33

Products to be discontinued	Recommended substitute products	Installation
AZ1 ***	AZ7***	Please note that installation method and operation characteristics are different.
AZ2***	$A Z 7 * * *$	Please note that installation method and operation characteristics are different.
AZ6***	AZ7***	Please note that installation method and operation characteristics are different.
AZ66***	$A Z 7 * * *$	Please note that installation method and operation characteristics are different.

FOREIGN STANDARDS OVERVIEW

1. International Standards
 IEC standard

International Electrotechnical Commission By promoting international cooperation toward all problems and related issues regarding standardization in the electrical and electronic technology fields, the IEC, a non-governmental organization, was started in October, 1908, for the purpose of realizing mutual understanding on an international level. To this end, the IEC standard was enacted for the purpose of promoting international standardization.
2. North America

UL (Underwiters Laboratories Inc.)
This is a non-profit testing organization formed in LISTING MARK

Fig. 1

RECOGNITION MARK

Fig. 2

Certification

Fig. 3

Component Acceptance

Fig. 4

Fig. 5

${ }^{7} \mathbf{N T}_{\text {us }}$

Fig. 6

3. Europe
 EN standard

European Standards/Norme Europeennee (France)/Europaishe Norm (Germany) Abbreviation for European Standards. A unified standard enacted by CEN/CENELEC (European Standards Committee/European Electrical Standards Committee). EU and EFTA member nations employ the content of the EN standards into their own national standards and are obligated to abolish those national standards that do not agree with the EN standards.
(1) Germany

VDE (Verband Deutscher Elektrotechniker)

 The VDE laboratory was established mainly by the German Electric Technology Alliance, which was formed in 1893. It carries out safety experiments and passes approval for electrical devices and parts. Although VDE certification is not enforced under German law, punishment is severe should electrical shock or fire occur; therefore, it is, in fact, like an enforcement.TÜV (Technischer Überwachungs-Verein) TÜV is a civilian, non-profit, independent organization that has its roots in the German Boiler Surveillance Association, which was started in 1875 for the purpose of preventing boiler accidents. A major characteristic of TÜV is that it exists as a combination of 14 independent organizations (TÜV Rheinland, TÜV Bayern, etc.) throughout Germany. TÜV carries out inspection on a wide variety of industrial devices and equipment, and has been entrusted to handle electrical products, as well, by the government. TÜV inspection and certification is based mainly on the VDE standard.
TÜV certification can be obtained from any of the 14 TÜVs throughout Germany and has the same effectiveness as obtaining VDE certification.

SAFETY STANDARDS RECOGNITION

Limit switches

Product name		UL recognized		CSA certified		TÜV approval	
		File No.	Approved ratings	File No.	Approved ratings	File No.	Approved ratings
SL limit switches		E122222	4A 250V AC	LR55880	4A 250V AC	-	-
HL limit switches	Dies-cast case standard load type	E122222	$\begin{gathered} \text { 5A 250V AC } \\ \text { Pilot duty B300 } \\ \hline \end{gathered}$	LR55880	$\begin{gathered} \text { 5A 250V AC } \\ \text { Pilot duty B300 } \\ \hline \end{gathered}$	J9650514	DC-12 1A 30V-
	Die-cast case low level load type (includes connector type)		0.1A 30V DC		0.1A 30V DC		DC-12 0.1A 30V-
	Plastic case standard load type		5A 250V AC Pilot duty B300		5A 250V AC Pilot duty B300	J9650515	$\begin{gathered} \text { AC-15 2A 250V~ } \\ \text { DC-12 1A 30V- } \end{gathered}$
	Plastic case low level load type		0.1A 30V DC		0.1 A 30V DC		DC-12 0.1A 30V-
ML limit switches	Standard type	E122222	10A 250V AC	$\begin{gathered} \text { E122222 } \\ \text { (C-UL) } \\ \hline \end{gathered}$	10A 250V AC	J9551204	AC-15 2A 250V~
	Epoxy-sealed terminal type	-	-	-	-	-	-
	With lamp	-	-	-	-	-	-
QL limit switches		E122222	5A 250V AC	LR55880	5A 250V AC	-	-
VL limit	Standard type	E122222	5A 250V AC Pilot duty B300	$\begin{gathered} \mathrm{E} 122222 \\ (\mathrm{C}-\mathrm{UL}) \end{gathered}$	5A 250V AC Pilot duty B300	J9551203	AC-15 2A 250V~
switches	With neon lamp					-	-
DL limit switches		E122222	$\begin{gathered} 6 \mathrm{~A} 380 \mathrm{~V} \text { AC } \\ \text { Pilot duty A300 } \end{gathered}$	$\begin{gathered} \text { E122222 } \\ \text { (C-UL) } \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{~A} 380 \mathrm{~V} \text { AC } \\ \text { Pilot duty A300 } \\ \hline \end{gathered}$	J9551205	AC-15 2A 250V~
Vertical limit switches		E99838	$\begin{array}{r} \hline 10 \mathrm{~A} 1 / 2 \mathrm{HP} 125 \mathrm{~V} \mathrm{AC} \\ 6 \mathrm{~A} 1 / 2 \mathrm{HP} 250 \mathrm{~V} \text { AC } \\ \hline \end{array}$	-	-	-	-
Compact Magnelimit	Standard type	E43149	5A 250V AC	$\begin{gathered} \text { E43149 } \\ \text { (C-UL) } \\ \hline \end{gathered}$	5A 250V AC	-	-
	Water-resistant type		2A 250V AC	$\begin{gathered} \hline \text { E43149 } \\ \text { (C-UL) } \\ \hline \end{gathered}$	2A 250V AC	-	-
Magnelimit		E122222	$\begin{gathered} \text { 5A 250V AC } \\ \text { Pilot duty B300 } \\ \hline \end{gathered}$	$\begin{gathered} \text { E122222 } \\ \text { (C-UL) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 5A 250V AC } \\ \text { Pilot duty B300 } \\ \hline \end{gathered}$	-	-

CE MARKINGS OVERVIEW

Limit switches conforming to EN/IEC standards

The limit switches shown below conform to both EN and IEC standards, and may display the CE markings.

Product classification	Product name	Suitable standard	Approving body	File No.
Limit switches	HL	EN60947-5-1	TÜV	J9650514/J9650515
	ML	EN60947-5-1	TÜV	J 9551204
	VL	EN60947-5-1	TÜV	J 9551203
	DL	EN60947-5-1	TÜV	J 9551205
	Magnelimit	EN60947-5-1	-	-

Note: Refer to the page for each individual product for detailed approval conditions and approved types. Moreover, the HL limit switch alone does not display the CE mark as standard. If the CE mark is necessary, add (CE) to the end of the part No. when ordering.

What are EN standards?

An abbreviation of Norme Europeenne (in French), and called European Standards in English. Approval is by vote among the CEN/CENELEC member countries, and is a unified standards limited to EU member countries, but the contents conform to the international ISO/IEC standards.
If the relevant EN standard does not exist, it is necessary to obtain approval based on the relevant IEC standard or, if the relevant IEC standard does not exist, the relevant standard from each country, such as VDE, BS, SEMKO, and so forth.

CE markings and EC directives

The world's largest single market, the European Community (EC) was born on 1 January 1993 (changing its name to EU in November 1993. It is now always expressed as EU, apart from EC directives.) EU member country products have always had their quality and safety guaranteed according to the individual standards of each member country. However, the standards of each country being different prevented the free flow of goods within the EU. For this reason, in order to eliminate non-tariff barriers due to these standards, and to maximize the merits of EU unification, the EC directives were issued concomitant to the birth of the EU.

The EN standards were established as universal EU standards in order to facilitate EU directives. These standards were merged with the international IEC standards and henceforth reflect the standards in all countries. Also, the CE markings show that products conform to EC directives, and guarantee the free flow of products within the EC.

Appropriate EC directives for control equipment products

The main EC directives that are to do with machinery and electrical equipment are the machinery directive, the EMC directive, the low voltage directive, and the telecom directive. Although these directives have already been issued, the date of their enactment is different for each one. The machinery directive was 1 January 1995. The EMC directive was 1 January 1996, and the low voltage directive was enacted from 1 January 1997. The telecom directive was established by the separate CTR (Common Technology references.)

